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1. INTRODUCTION

Recent advances in semiconductor growth techniques have led Lo a wide-
spread interest in the physics of ultra-small semiconducting systems. Quantum
wells, superlattices, double-barrier resonant tunneling structures, and a
variety of other exotic structures have become the objects of extensive inves-
tigation [1,2]. The interest in these ultra-small systems is motivated by two

Sfactors. First, their optical and electrical properties have quasi-two-
dimensional (2-d) features which frequently offer distinct advantages in
device applications. Second, actual physical systems whoso electron dynamics
are quasi-2-d provide one with a rich testing ground for theoretical models.

One of the systems attracting considerable attention is the double-barrier
resonant tunneling (DBRT) structure [3]. A typical structure consists of two
thin -50 A AlGaAs layers, separated by an equally thin (-50 A) GaAs layer, all
of which are embedded in a single GaAs crystal. The regions to the left and
right of the barriers (usually beyond spacer layers) are n-doped and usually
electrically contacted for transport studies. Current-voltage characteristics
of this device show an enhancement in the current when the applied voltage
-aligns the quasi-Fermi energy of incoming electrons with the energies of the
quasi-bound states in the quantum well region. A number of theoretical calcu-

lations have been done to describe the nonlinear current response [4-16] in
this system. However, controversy still exists regarding the basic mechanism
behind the nonlinearity [14,15,17-20]. Despite the large number of studies to
date, we have not found in the literature any calculation of the local density
of states (DOS) for even a highly simplified model of a DBRT structure. The
local DOS provides information about resonant states and gives one a quantita-
tive measure of the extent to which the dynamics are quasi-2-d. The purpose of
this paper is to present such a calculation.

In section 2, using a simple model potential, we calculate the eigenvalues
and eigenfunctions of an effective mass Schroedinger equation. These results
are used in section 3 to compute the local DOS in the quantum well region of
the potential. In section 4, we relate this local DOS to an integral of a
one-dimensional (1-d) DOS. This latter DOS has sharp peaks at energies corre-
sponding to the quasi-bound states between barriers.

2. THE MODEL

We consider a simplified model, which is defined by the following effec-
tive mass Hamiltonian:

,n2
H V, + V(z) , (1)H: 2me

Qc

where m, is the effective mass of electrons at the bottom of the GaAs conduc-

tion band and the double barrier potential, V(z), is

V(z) VoV(z a) V0 6(,7 - a) (2)!5
ii.
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In this model, the two AlGaAs potential barriers have been replaced by delta
function barriers of strength Vo, separated by a distance 2a along the z-axis

* (the growth direction). The parameter V0 is given by

Vo  - bAVc , (3)

where AVc is the conduction band discontinuity and b is the barrier width.

We solve the one-electron Schroedinger equation

HM(r) = Eq(r) , (4)

subject to periodic boundary conditions in the x- and y-directions
i (x+L, y, z) = T(x, y, z) (5a)

'(x, y+L, z) = (x, y, z) (5b)

Since equation (4) is separable, we can write the wavefunction in the product

form

i "
T(4) 1 e IP(z) , (6)

L

where k : kx kyO) kx = 2Trnx/L, ky = 2iny/L, and nx , ny take the integer

values 0, +1, +2 ..... The z-part of the wavefunction, ip(z), satisfies the

reduced equation

2m
I''(z) + c [E - V(z)]1P(z) = 0 , (7)

where E = E - k ./2mc  For w(z), we choose the vanishing toundary conditions

_L) 0 (8a)

0 (8b)
i2

The presence of the delta functions imposes two jump discontinuity condi-

tions on the derivative of (z) at the delta function positions, which are
given by

S(-a + 0 ) - pl(-a - 0+) = -YX (-a) , (9a)

S'(a + 0') - '(a - 0 + ) = Y,(a) (9b)

6

04K



where Y = 2mcVo/ f2, and 0+ is a positive infinitesimal quantity. These two
conditions may be found by integrating equation(7) over the infinitesimal

intervals (-a - 0 + , -a + 0+) and (a - 0+, a + 0+). In addition, we require

the wavefunction to be continuous at the delta function positions

- 0+ ) = (-a + o+ )  , (10a)

w(a - 0 + ) = (a + o+ )  (lOb)

To look for a solution to equation (7), we take advantage of symmetry and

solve the eigenvalue problem in the region 0 < z < L/2. We then look for even

wavefunctions of the form

9 A1 (k)cos(kz) 0 < z < a

A2 (k)cos(kz) + A (k)sjn(kz) a < z < L

and odd wavefunctions of the form

B1(k)sin(kz) , z < a
ok(Z). L (12)

oB2(k)cos(kz) + B (k)sin(kz) a < z < L
2 3 2

For the even wavefunctions, when we impose the conditions in equations (8b),

(9b), and (lOb), we get a set of three homogeneous equations for Al(k), A2 (k),

and A (k). To have a nontrivial solution, we require the determinant of the

* coefficient matrix to vanish. This gives an equation for the allowed k's

which label the even-parity states:

-cos(ka)sin(ki - ka) + cos(k) = 0 (13a)
k

Here we have used the convenient definition Z. = L/2. Solving the three homoge-

neous equations for the ratios, we find

A3( Y 2
A3(k )  - cos (ka) , (13b)

9 A2(k) k

A 2(k)Y
A(k) 1 - sin(ka)cos(ka) (13c)

Applying the same boundary conditions to the odd solutions given in equa-

tion (12) and setting the determinant of the coefficient matrix to zero, we

obtain the equation satisfied by the allowed wavevectors labelling the odd-

parity states:

Y sln(ka)sin(kt - ka) + sin(k£) = 0 (14a)

• 'V , j.. % % , % % .% --.



Solving the associated system of equations leads to

B (k) sin 2(ka) ,(1
14b)

B 1(k) k

B 1 (k sin(ka)cos(ka) (14c)

The constants A1 and B1 are evaluated from the normalization condition

f-Z ak Z)12dz 
= 1

where a e (o) for the even (odd) solutions. We find

A2(k) + kk2 +i'2a (- I sin( 2ka) + -cs(a

kicos k(Z~a)sin kZa i (2 )--Ysin(2ika) 1]o'ka

- Y 2 Y L sin(2ka) - 1]Cos 2(ka)sin k(i+a)sin k(Z-a)} (15)

and

12 / sin(2ka) +'1-a Y (2a + 1sn()+ si2(k)

ill -___ _ + ( -y) [ s n~ a 1 21 1
+ cos k= ~ ~ i 2k (Za - +i'a - sin a + -si n(2ka -

1 Z k

E+ k (17)

With vanishing boundary conditions on ,(z) at z = ±Z, the limit of zero
strength df ,ta functions (Y 0) is identical to the limit where the delta

funtinsare piaced on the boundaries (a -* Z). In both cases one recovers
the 1-1 particle in a box problem, where A 3/A 1  B 2 /B 1  0, A 2/A 1  B B/B 1
and A 1  B1 =(2/L)1/12.
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3. THREE-DIMENSIONAL DENSITY OF STATES

We now construct the single-particle Green's function

' = 
(18)

a k E - E + i O
k, at k

where the eigenstates '_J(4r) are given by equations (6), (11), and (12.), and
(eual ) ait,

k, (k = , k . Here a (equal to e or o) labels a state's parity, k K

k dY and k are given by the roots of equations (13a) and (1 4a) for even- and
odd-parity states, respectively. Using the Green's function, we ca.cuiat ,,.
local DOS (including both spins):

D(z,E) = - 2 Im G(r,*r;E)
IT

2 1  (z) E

a k2  
L -1 k
.i c

In the limit when the system size goes to infinity, wittn "a" h, ,
stant, the density of allowed wavevectors becomes 2,T/L. This a. ,,ws i:
change the sums in equation (20) to integrals:

D(z,E) L 3 I d2k f d k I 6(E -E,'
- 0  C

The integration over k - (k x,ky) is over all positive and negative wav,-v,.

tors, whereas the z-component wavevector, k, is integrated )ver p,,- ; ! .
values only. Using the explicit form of the wavefunctions and changin. t
spherical momentum coordinates, we have for the region -a < z e +a

D(zE) = I8aE 7r/2)(E/E o )
1/2 dq [F (q)cos'(Z q) Fo(q)sin2(a q)]

where

F q) 2 1I O ',,a
e q2 + Ucos2 (q) - Uq sin(2q) + , +eqa

q__ _ __ _ _ __ _ _ __ _ _1

Fo(q) q2 + U~sin2 (q) + Uq sin(2q) =  (23b)I0 + 2- qI - e 2q) 1 2

9 % %



the dimensionless potential strength U is defined by U = Ya = 2mVoa/ 2 , and a
convenient energy scale, E0 = 72 2 /8m ca 2 , has been introduced. The functions
F e(q) and F o(q) are related to the wavefunction amplitudes by

lira n A2 (a) -- Fe(q)
a/*O a

. lim B = F(q)
i a/Z-,O

The local DOS given by equation (22) is a sum of two terms. The term contain-
ing Fe(q) gives the local density of even states in the well, and the term
with F0 (q) gives the local density of odd states. Each function F (q), a = e
or o, is an even function with an infinite sequence of (complex conjugate)
pairs of simple poles in the complex q-plane (see fig. 7). Each pair of poles
with Re(q) > 0 corresponds to one resonance. In the limit U - 0 (no delta-
function barriers), these poles move away from the real-q axis to infinity ana
F (q I on the real axis. In this limit, D(z,E) is simply the local DOS for
a free electron gas in a box of volume 2aL2 .

2.0

1.5
X X°

1.0 x

0.5 x

S 0.0- x

-0.5 X
X

-1.0- x

. -1.5

-2.0 1 1 1
0.0 5.0 10.0 15.0 20.0

*Re q

Figure 1. Locations of pol'es of F (q) are shown for U =

3. Poles of F (q) (not shown) lie between poles of Fe(q).
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As we approach the limit of strong barriers, U >> 1, the poles of the
functions F.(q) move in toward the real axis in pairs (one pole above and one
pole below) (see fig. 1). In the region of U >> 1, and 0 < q < U, the func-
tions FU(q) are well represented by a sum of Lorentzians

'.: F

F (q) - cn (24)a o n (q - q n)2 + r
2

an

where the real and imaginary positions of the poles, q n - ioan' are functions
of U. For U - we have ran + 0, qen (2n + 1)r/2, and Qon + n7. In this
limit we find

lim F (q) - Tr 6(q - qn) (25)
a+ anU ® n

Rather than look at the local DOS in more detail, we consider its integral
over the well volume

M.L -f/2)E/EoP dq tFe(q) + Fo(q) + Fe(q) - Fo(q) sin(2q)
IT2t 2 JfL 2q J

(26).5

The function N(E) gives the number of states in the well per unit energy
interval. In the limit of weak barriers, U << 1, we find

N (E) ~ 2 2aL2VE

which is the DOS for a free electron gas in a volume 2aL 2.

in the limit of strong barriers, U >> 1, we find

SU- mL 2
N(E) - , e(E - n2E ) (27)

n=1

where 8(x) = I for x > 0 and e(x) = 0 for x < 0. This is the well-known
staircase-like DOS one would expect in a quasi-2-d system. For intermediate
values of U, the DOS N(E) is plotted in figure 2.

6
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Flgure 2. Dimensionless density of states between barriers,

7If2/mL2)N(E), is plotted as a function of dimensionless

electron energy, E/Eo , for values of U = 0, 1, 3, 5, 10,

20. Higher values of U correspond to an increased step-

like structure.

4. ONE-DIMENSIONAL DENSITY OF STATES

Since the Hamiltonian in equation (1) conserves transverse electron momen-

turn, k and k are good quantum numbers, and an electron placed in a state of

definite k, will remain in this state indefinitely. With this in mind we

0I consider the Green's function

G -d ( , ';E) k a + (30)
a k E - E4 + iO

o k

in which the summation on k is omitted. Using this Green's function we

define the 1-d local DOS (including both spins) as

% 12
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D, d(z, E . _ Im) -(r,' _), (31)

q, 2)ci i 2 2m

; '- : a k I ( Z 2 6 ( ---o 2- c

where ak is given in equations (11) and (12), and Ez  E E- 2k/2 .

The function Dld(z,Ez) gives the number of states (labelled by a and k.)

per unit volume, for a given k|. This function displays peaks which are

associated with the resonances. Substituting the explicit form of the wave-

functions into equation (31), we find

0 (z,E = a2vE[Fei VY) Cos(.- z/) F,(u T)sin 2(LZ~ v'H)]
1-cl 2aLE e co' (32)

where the dimensionless z-component of energy, c, is defined by E Ez /Eo .

Again, rather than looking at this in more detail, we consider the integral of

D1dtZEz) over the well volume

N 1-d = r D _d(zEz d3r
well

sin( /w-)
+r

Fe + + FoV 2 12/C

This function specifies the number of states in the well cabeiied by c, c
4

per unit energy, for a given k In the limit of weak barriers, U 4 0, the

4 function Nl-d(EZ -
4 1/(Ec'/2) which is the DOS for a 1-d free-electron gas.

In the limit of strong barriers, U 4 -, the number of states in the we!i per

unit energy is just a sum of delta functions. In this limit the resonant

states are the eigenstates of the 1-d particle in a box problem, and the
resonance peaks shift to the appropriate limiting eigenvalues. For inter-

mediate values of U (and energies 0 < C < U) the function N1 _d(EzJ is approxi-

mately a sum of Lorentzians (see fig. 3). The lowest energy peak is composed

predominantly of even wavefunctions, while the second peak is composed mostly
of the odd wavefunctions. In figure 14 we show the DOS NIld(E) for several
values of U, in the energy region of the lowest resonant level. The inset of

figure 3 shows the peak position of the lowest resonance as a function of

13
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barrier strength U. For energies much larger than U, c >> U, the functions
F [ /-: / 2- 1 and the DOS returns to its value in the absence of barriers,

N,._d(Ez )  1/(E o0 -

24.0 1.0

20.0 0.9

LU S16.0.7-
Lu 0.6-

.12.0- 0.5-
C . 0 .4

S80 0.300 50 10.0 15.0 20.0

4.0U

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0-
iii Ez/Eo

Figure 3. On outer axis, a plot of 2EoN1d (Ez) versus Ez/E o

is shown. On inset, solid line is a plot of energy of

-"., lowest resonance (lowest energy peak in density of states)
versus dimensionless potential U. Vertical distance be-
tween dotted curves gives full width at half maximum of

* lowest resonant level, as a function of U.
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25.0

' 20.0-
, ' U =5

" 15.0 - \

U. 0, U 3CJ10.0-

U . 1... \ \%5.0-
-..........

0.0 _
0.0 0.2 0.4 0.6 0.8 1.0 1.2

•" Ez/Eo

Figure 4. One-dimensional density of states, 2EoN1_d(EZ),

plotted versus Ez/E o in region of resonance peak for
several values of U.

5. SUMMARY

Within the context of a simple model for a double-barrier structure, we

solved for the normalized eigenstates. Using these eigenstates we calculated

the 3-d local DOS between the barriers. This quantity shows a crossover from

a 3-d square root of energy behavior to a quasi-2-d staircase-like behavior,

as the barrier strength U is increased. For electron energies c >> U the DOS

always returns to the free electron DOS. We also calculated the 1-d DOS for a

given transverse momentum k This quantity shows sharp peaks at energies

corresponding to the resonant states. In a more realistic model, one can use

the width of the lowest peak in Nld(Ez) to reliably estimate the lifetime of

the lowest quasi-bound state. The inverse of this lifetime gives an estimate

of the characteristic frequency above which the resonant contribution to the

current becomes negligible.

15
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